The Cauchy problem for weakly hyperbolic systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Cauchy Problem for Nonlinear Hyperbolic Systems

This paper consider various examples of metrics which are contractive w.r.t. an evolution semigroup, and discusses the possibility of an abstract O.D.E. theory on metric spaces, with applications to hyperbolic systems. In particular, using a recently introduced deenition of Viscosity Solutions, it is shown how a strictly hyperbolic system of conservation laws can be reformulated as an abstract ...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Precise Finite Speed and Uniqueness in the Cauchy Problem for Symmetrizable Hyperbolic Systems

Precise finite speed, in the sense of that the domain of influence is a subset of the union of influence curves through the support of the initial data is proved for hyperbolic systems symmetrized by pseudodifferential operators in the spatial variables. From this, uniqueness in the Cauchy problem at spacelike hypersurfaces is derived by a Hölmgren style duality argument. Sharp finite speed is ...

متن کامل

Factoring Weakly Compact Operators and the Inhomogeneous Cauchy Problem

By using the technique of factoring weakly compact operators through reflexive Banach spaces we prove that a class of ordinary differential equations with Lipschitz continuous perturbations has a strong solution when the problem is governed by a closed linear operator generating a strongly continuous semigroup of compact operators.

متن کامل

Energy Estimates for Weakly Hyperbolic Systems of the First Order

For a class of weakly hyperbolic systems of the form Dt − A(t, x,Dx), where A(t, x, Dx) is a first-order pseudodifferential operator whose principal part degenerates like t∗ at time t = 0, for some integer l∗ ≥ 1, well-posedness of the Cauchy problem is proved in an adapted scale of Sobolev spaces. In addition, an upper bound for the loss of regularity that occurs when passing from the Cauchy d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Partial Differential Equations

سال: 2017

ISSN: 0360-5302,1532-4133

DOI: 10.1080/03605302.2017.1399906